Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 3 entries in the Bibliography.


Showing entries from 1 through 3


2014

Survey analysis of chorus intensity at Saturn

In order to conduct theoretical studies or modeling of pitch angle scattering of electrons by whistler mode chorus emission at Saturn, a knowledge of chorus occurrence and magnetic intensity levels, PB, as well as the distribution of PB relative to frequency and spatial parameters is essential. In this paper an extensive survey of whistler mode magnetic intensity levels at Saturn is carried out, and Gaussian fits of PB are performed. We fit the spectrum of wave magnetic intensity between the lower hybrid frequency and fceq/2 and for frequencies in the interval fceq/2 < f < 0.9 fceq, where fceq is the cyclotron frequency mapped to the equator. Saturn chorus is observed over most local times, but is dominant on the nightside in the range of 4.5 < L <7.5, with minimum power at the equator and peak power in the range of 5\textdegree < λ < 10\textdegree. Saturn wave magnetic intensity averaged in frequency bins peaks in the range of 10-5 < PB < 10-4 nT2 for 0.4 < β < 0.5 (β = f/fceq). Gaussian fits of PB with frequency and latitude are obtained for lower band chorus. Plasma injection regions are occasionally encountered with significant chorus power levels. Upper band chorus is seen almost exclusively within plasma injection regions, and the number of events is very limited, but when present, the average levels of PB can be higher than the lower band chorus. The overall magnetic intensity contribution of the upper band, however, is insignificant relative to the lower band.

Menietti, J.; Averkamp, T.; Groene, J.; Horne, R.; Shprits, Y; Woodfield, E.; Hospodarsky, G.; Gurnett, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2014

YEAR: 2014     DOI: 10.1002/jgra.v119.1010.1002/2014JA020523

Space physics

Space science: Near-Earth space shows its stripes

Using some of the first scientific satellites put into orbit during the late 1950s, teams led by physicists James Van Allen in the United States and Sergei Vernov in the Soviet Union independently reported1, 2 on defined regions of radiation in near-Earth space. These regions came to be known as Earth\textquoterights radiation belts, and they represent the first major scientific discovery of the space age. However, despite decades of study, many questions in radiation-belt physics remain unanswered, mostly concerning the nature of the inner and outer belts, which are populated by electrons moving at near the speed of light. As society becomes ever more dependent on satellite-based technology, it is increasingly important to understand the variability in the radiation belts, because the highest-energy \textquotedblleftkiller electrons\textquotedblright3 can result in potentially fatal damage to sensitive spacecraft electronics4. On page 338 of this issue, Ukhorskiy et al.5 present observations and a model of a previously unexplained structured feature of the inner radiation belt, which they call zebra stripes.

Turner, Drew;

Published by: Nature      Published on: 03/2014

YEAR: 2014     DOI: 10.1038/507308a

Space physics; Van Allen Probes

2013

A Study of the Duration of the Passage through the Van Allen Belts for a Spacecraft going to the Moon

This paper has the goal of estimating the fuel consumption and the duration of the transit in the Van Allen belts for a flight of a spacecraft going from the Earth to the Moon. This problem is very important because the region interior to the belts have a high density of energetic charged particles that can damage the satellite, so minimizing this transit time helps in protecting the equipments on board. The propulsive force is assumed to have a low magnitude and to be applied in the direction of the motion of the spacecraft to maximize the energy transferred to the space vehicle. Perturbation forces are considered in the dynamical model and they influence in both results, consumption and transit time.

Oliveira, T; Rocco, E; Prado, A; Ferreira, J;

Published by: Journal of Physics: Conference Series      Published on: 10/2013

YEAR: 2013     DOI: 10.1088/1742-6596/465/1/012019

Space physics



  1